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Neglect of mathematics works injury to all knowledge, 
since he who is ignorant of it cannot know the other 

sciences or the things of this world.  
 

Roger Bacon (ca. 1214 - 1294)  



Classification (1) 
Data 

 Pairs of observations (xi,yi) drawn from distribution 

Vectors ï collections of features, e.g., height, weight, blood 

pressure, age, é. 

Matrices ï images, movies, remote sensing and satellite 

data (multispectral) 

Strings and structured objects will not be considered here 

 



Classification (2) 

Goal 

     Estimate y given x at a new location. Or find a function 

f(x) that does the trick 

 



Support Vector Machines (SVMs)  

ÅSVM in many cases competitive with existing classification 
methods ï exhibits good generalization, 

ÅHypothesis has an explicit dependence on the data (via 
the support vectors). Hence can readily interpret the 
model, 

ÅRelatively easy to use, 

ÅLearning involves optimization of a convex function (no 
false minima, unlike a neural network), 

ÅCan implement confidence measures, 

Å It is straightforward to extend it to the nonlinear case using 
the kernel trick. 



Support Vector Classification 

Å Training vectors: xi, i=1,é,m 

Å Feature vectors. For example, 

 A patient = [height, weight, é] 

Å Consider a simple case with two classes 

 Define an indicator vector y 

 

 

 

 

Å A hyperplane which separates all data 
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Separating Hyperplanes 

Many possible 

choices of w and b 

A separating hyperplane: wTx + b = 0 
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Optimal Separating Hyperplane  

One to rule them allé.  



Optimal Separating Hyperplane  

Optimal Separating Hyperplane 



Maximum Margin Concept 
Margin to Norm 

ÅSeparation of sets is given by          so maximize 

that 

ÅEquivalently minimize           . 

ÅEquivalently minimize           . 

Constraints 

ÅSeparation with margin, i.e., 

 

 

ÅEquivalently, 
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Optimization Problem for Linearly 

Separable Data ï Hard Margin Case 

A quadratic programming problem 

 

 

 

Properties 

ÅProblem is convex 

ÅHence it has a unique minimum 

ÅIt exists efficient algorithms to solve the problem 



Data may not be linearly separable 

Soft Margin Case 



Deriving Dual 
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Primal Problem 

Its Dual 
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Lagrangian Dual 
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Support Vector Expansion 

Solution is                      

 

Å w is given by a linear combination of training patterns xi. It is 

independent of the dimensionality of x. 

Å w depends on the Lagrange multipliers  
 

Karush-Kuhn-Tucker Conditions 

Å At optimal solution Constraint x Lag. Multip. = 0 (complementarity cond.) 

Å In our context this means 

 

 Equivalently 

 

Only points at the decision boundary can contribute to the solution 
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Extension to the Nonlinear Case 

and Kernel Trick 

),()(),(, jijiji k xxxxxx =Ý ff

We map the data points into a much higher-dimensional space through 

 

 

 

where we used the mapping                     .The higher dimensional space is 

called feature space and it must be a Hilbert Space.  
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A Kernel Example 

Polynomial Features in R2 ),2,(:)( 2
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Dot Product 

Trick works for any polynomials of order n via 

Some other possible kernel functions 

Gaussian Kernel 

Sigmoid Kernel 



Decision function in nonlinear case 

ÅAt optimum )(
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Decision Function 

We use only              with           . As a result, the solution is sparse and 

real-time performance is very fast.  



Linear SVM C=50 



Linear SVM C=50 



Linear SVM C=50 



Linear SVM C=50 



Insights 

Changing C 

ü For clean data C does not matter much 

ü For noisy data, large C leads to narrow 

margin (SVM tries to do a good job at 

separating, even though it isnôt possible) 

Noisy Data 

ü Clean data has few support vectors 

ü Noisy data leads to data in the margins 

ü More support vectors for noisy data  

 



Gaussian Kernel with  1=s



Gaussian Kernel with  2=s



5=sGaussian Kernel with 



Gaussian Kernel with 10=s



Geometrical Interpretation  

x1 

d/2 

d/2 

Class-1 samples 

Class-2 samples 

Maximum margin hyperplane 

x2 

SUPPORT VECTOR MACHINE CLASSIFIER 

Convex Hull 
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Geometrical Interpretation  
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Classical SVM formulation 

Convex hull formulation 
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Efficient SVM Software 

ÅLIBSVM -- A Library for Support Vector Machines Using 

SMO (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) and its 

linear version LIBLINEAR -- A Library for Large Linear 

Classification 

(https://www.csie.ntu.edu.tw/~cjlin/liblinear/) 

ÅLIBOCAS - Library implementing OCAS solver for 

training linear SVM classifiers from large-scale data 

    (http://cmp.felk.cvut.cz/~xfrancv/ocas/html/) 

ÅPegasos: Primal Estimated sub-GrAdient SOlver for 

SVM (http://www.cs.huji.ac.il/~shais/code/) 

 

 

 

 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://cmp.felk.cvut.cz/~xfrancv/ocas/html/
http://www.cs.huji.ac.il/~shais/code/


Large Margin Classifiers Based on 

Affine Hulls 
ÅConvex hull approximation 
ïUnrealistically tight in high-dimensional spaces 

ïClasses typically extend beyond the convex hulls of 

their training samples 

ÅAffine hull approximation 
ïRather loose approximations to the class regions 

ÅLarge-Margin Classifier Using Affine Hulls 
ïMaximum margin separators between pairs of affine 

hulls 



Large Margin Classifiers Based 

on Affine Hulls 
ÅExample: Comparison of convex and affine hulls of 

samples 

Convex hulls of samples is a 

tight model for approximation 

of class regions. 

Affine hulls of samples is a loose 

model for approximation of class 

regions. 
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Method 

Binary classification problem 
 

 Training data : 

 

 

 1. Approximate classes with affine hulls of 

the class samples (training data). 



 2. Find the maximum margin linear separating 
hyperplane between affine hulls of classes. 

 
  Hyperplane equation: 

: normal of the separating hyperplane 

The optimal separating hyperplane is the one that bisects 

perpendicularly the line segment connecting the closest points 

Method 



Method 
1. Linearly Separable Case 

The affine hulls of two classes do not intersect, i.e., they are linearly 

separable, if the affine combinations of their samples satisfy the rule 

U : orthonormal basis for the directions spanned by the affine subspace  

v : contains the reduced coordinates of the point within the subspace 

U can be found as the U-matrix of the óthinô SVD of 

l : number of significantly nonzero singular values 



Method 
1. Linearly Separable Case 

Suppose two affine hulls with point sets                       and                      . 

A closest pair of points between the two hulls can be found by solving 

, 

Solution: 

Decision boundary : 

orthogonal projection onto the joint span of the directions contained in 

the two subspaces 

corresponding projection onto the orthogonal complement of this span 

the closest points on the affine hulls of positive and negative classes 



Method 
2. Inseparable case 

Ç  A problem arises if the affine hulls of classes intersect, i.e., affine hulls 

are not linearly separable. 

    Solution: Reducing affine hulls to restrict the influence of outliers. 

Ç  To reduce affine hulls, we use the initial affine hull formulation and 

introduce upper and lower bounds on coefficients     . 

Ç  Finding the closest points on the reduced affine hulls can be written as a 

quadratic optimization problem: 

a user-chosen bound 



Method 
2. Inseparable case 

Ç This is a quadratic programming problem that can be solved using 

standard optimization techniques. 

Ç                                         is a positive semi-definite matrix, thus the 

objective function is convex and a global minimum exists as in the SVM 

classifier.  

Ç Moreover, if the Hessian matrix is strictly positive definite, the solution is 

unique and it is guaranteed to be the global minimum. 



Method 
2. Inseparable case 

Ç Since the coefficients are bounded between       and      , the solution is 

determined by more points and no extreme point or noisy point can 

excessively influence the solution for well-chosen    . 

Ç Once we compute the optimal values of coefficients      , the normal and 

the offset of the separating hyperplane can be computed as in the linearly 

separable case 

Ç We call this method Large Margin Classifier of Affine Hulls (LMC-AH).  



Method 
2. Extension to the nonlinear case 

Ç  If the underlying geometry of the classes is highly complex and 

nonlinear, we can map the data into a higher-dimensional space where the 

classes can be approximated with linear affine hulls. 

Ç  Note that the objective function is written in terms of the dot products of 

samples, which allows the use of the kernel trick. 

 Replacing              with 

mapping function from the input space to the mapped space 

Ç  As a result, more complex nonlinear decision boundaries between 

classes can be approximated by using this trick. 



Large-Margin Classifiers Using 

Hyperdisks 
Å The hyperdisk class model is the intersection of the 

smallest bounding hypersphere and affine hull of the 

training samples. 

 

 

 
 

Å The approximation is still somewhat loose, but it does 

encode both the relevant variables and the region occupied 

by the class within their subspace. 

Å The hypersphere is computed by solving a quadratic 

program (see below). Distance computations are trivial. 



Hyperdisk Formulation 



Method 
Linearly separable case 

Since we can write an hyperdisk of a class as below 
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Method 
Linearly separable case 

If we rewrite the optimization problem by using matrices, the  

optimization problem becomes 
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where G=(yô*y)([X1 X2]ô*[X1 X2]), G1=X1ô*X1, G2=X2ô*X2 

This is a convex problem since the Hessian matrix G and the other 

quadratic term matrices G1 and G2 are positive semi-definite. Thus 

a global minimum exists as in SVM classifier. 

 



Motivations for Replacing the Nearest-

Convex-Model Approaches with Margin-

Based Ones 
 

ÅThe pairwise decision boundaries (surfaces     

equidistant from the two convex models) returned by 

the nearest convex model classifiers are generically at 

least quadratic or piecewise quadratic in complexity. 

ÅFor example for affine hulls they are generically 

hyperboloids. Such decision boundaries are more 

flexible than linear ones, but in high dimensions when 

the training data is scarce this may lead to overfitting, 

thus damaging generalization performance. 



PART II ï EXTENSION TO THE 

MULTI-CLASS CASE 

  Main idea is to combine binary classifiers 

systematically 

ü One-Against-Rest 

ü One-Against-One 

ü Directed Acyclic Graphs (DAGs)  

ü Binary Hierarchical Decision Trees (BHDTs) 



One-Against-Rest (OAR) 

Training: For each class build a classifier for that class 

against the rest (If there are C classifiers this 

corresponds to C binary classifiers). 

Testing: Label of a test sample is determined based on 

the highest output value of the classifier in the 

ensemble. 

Limitations: 

Å Often very imbalanced classifiers 

Å Computationally expensive since the quadratic programming 

problem operates on large matrices  

 



One-Against-One (OAO) 

Training: Train all possible C(C-1)/2 binary classifiers out of 
C classes. 

Testing: The decision of the ensemble is decided by max 
wins strategy: each OAO classifier casts one vote for its 
preferred class, and the final decision is the class with 
the most votes. 

Limitations: 

Å It works well the number of classes is small and it is 
usually faster than OAR strategy. 

ÅThe total number of classifiers grows quadratically with 
the number of classes, and hence, becomes prohibitively 
expensive when C is large.    



Directed Acyclic Graphs (DAGS) 

 



Binary Hierarchical Decision Trees 

Å A well-balanced tree requires 

approximately log_2(C) 

classifier evaluations for 

traversing a path from the top 

to a bottom decision node. 

This results in a more efficient 

structure as compared to the 

DDAG algorithm in terms of 

testing time. 

Å The accuracy depends on 

the tree structure that creates 

well-balanced separable 

image class groups at each 

node of the tree. 

 

 



Binary Hierarchical Decision Trees 

BHDTs use use clustering algorithms to 
split the data in each node (k-means, 
spherical shells, Ncuts clustering, etc.) 

Å It should be noted that k-means based clustering methods do not 

target margin maximization between classes. But SVM classifiers work 

based on margin maximization. 

Å This must be compatible with our goal, which is grouping classes 

with the largest margin possible. Therefore, we approximate each 

class with a convex hull and use the convex hulls distances between 

pair-wise image classes to create a similarity matrix. 

Å We use NCuts clustering at each node to split the classes such that 

they are separated with the maximum margin. 

 



Part 3- Beyond Large Margin Classifiers   

Transductive SVMs 

Å Supervised learning methods use 

labeled data. 

Å In real worl applications, only a small 

fraction of data samples are labeled 

and there are abundant unlabaled 

data since  manual labeling is a slow 

and error-prone process. For 

example, web and text categorization, 

genomics applications. 

Å We can use unlabeled data to find 

better separators. 



Important Transductive SVM 

Methods in Literature 
ü  V. Vapnik, A. Sterin. On structural risk minimization or overall 

risk in a problem of pattern recognition. Automation and 

Remote Control, 10:1495ï1503,1977. 

ü K. Bennett and A. Demiriz. Semi-supervised support vector 

machines. In Neural Information Processing Systems, 1998. 

ü T. Joachims. Transductive inference for text classification 

using support vector machines. In International Conference 

on Machine Learning, 1999. 

üO. Chapelle and A. Zien. Semi-supervised classification by 

low density separation. In Proceedings of 10th International 

Workshop on Artifical Intelligence and Statistics, 2005. 

ü R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale 

transductive svms. Journal of Machine Learning Research, 

7:1687ï1712, 2006. 

 



METHOD 
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Goal: Finding a separating hyperplane that will best separate the labeled  

data samples and will be far from the unlabeled data samples. 

ULLib

Libyts

CC

ii

T

ii

T

i

UL

Li
i

L

i
i

b

++=-²+

=-²+

++ ää
+

+==

,...,1,1   

,...,1,1)(..

2

1
minarg

1

*

1

2

,

x

x

xx

xw

xw

w
w

( ) ää =

+

+= =+
L

i i

UL

Li i

T y
L

b
U

11

11
xw



Problem Setup 

Å Optimization problem can be written by using Hinge losses as the 

following, 
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Noisy labeled data will dominate the second term!  



Method - Problem Setup 

Labeled Data 

Robust Transductive SVMs use a more robust Ramp loss that is less 

affected from noisy examples compared to the Hinge loss. 

Ramp loss function                            ,  classical Hinge loss  

 

and  
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Method ï Problem Setup 

Unlabeled data 
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METHOD 

After these changes, the optimization problem becomes: 

The optimization problem can be written as the sum of convex and  

concave functions, or difference of two convex functions 
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METHOD 

Since the optimization problem can be written as the sum of convex and 

concave cost functions, we can use ñConcave Convex Procedure (CCP)ò to 

solve it. 

)()()( qqq concaveconvex JJJ +=

CCP basically decomposes a non-convex function into a convex and 

concave part and it solves the problem by an iterative procedure where 

each iteration approximate the concave part by its tanget and minimized the 

resulting convex function. 
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METHOD 



METHOD 

In contrast to the methods using 

GSMO (GSMO-Generalized 

Sequential Minimal optimization), 

RTSVM uses Stochastic-Gradient to 

solve the convex optimization 

problem. This makes sure that the 

method scales well with lareg-scale 

data !!! 

For the equality constraint, the 

problem is first solved with ignoring 

that constraint and then the 

parameters are projected onto the 

feasible set that satisfy the 

constraint. 



Experiments on a Synthetic Dataset 

Methods Clean 

data 

%10 Noise %20 Noise %30 Noise %40 Noise %50 Noise 

SVM 94 90 88 83 85 49 

TSVM-Light 94 91 91 89 90 37 

TSVM-LDS 93 93 92 92 93 28 

TSVM-

CCCP 

94 91 86 83 86 44 

RTSVM 93 93 93 93 93 73 



Best-Fitting Hyperplane Classifiers 

Classical Classification & Open Set 

Recognition 
Classical Classification 

   Training: We train classifiers by using labeled data 

samples belonging to some specific classes. 

   Testing: Learned classifiers are used to label samples 

belonging to the same classes used in the training. 

Open Set Recognition   

   Training: We train classifiers by using labeled data 

samples belonging to some specific classes as in 

classical classification setup. 

   Testing: Test samples can come from the unknown 

classes not seen during the training. 

 



Classical Classification & Open Set 

Recognition 

The separating hyperplane S returned by the SVM classifier separates 

people and dog classes. All samples under the separating hyperplane are 

assigned to the dog class. When there are test samples coming from the 

unknown classes such as chair and fish, these samples will be 

erroneously assigned to the dog class with high confidence scores. 

Adding another parallel hyperplane H helps to localize dog class samples 

better, and misclassifications can be reduced. 


