LARGE-MARGIN BASED CLASSIFIERS
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Neglect of mathematics works injury to all knowledge,
since he who is ignorant of it cannot know the other
sciences or the things of this world.

Roger Bacon (ca. 1214 - 1294,



Classification (1)

Data
Pairs of observations (x;,y;) drawn from distribution

Vectors 1T collections of features, e.g., height, weight, blood
pressure, age, e.

Matrices T images, movies, remote sensing and satellite
data (multispectral)

Strings and structured objects will not be considered here
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Classification (2)

Goal
Estimate y given x at a new location. Or find a function
f(x) that does the trick




Support Vector Machines (SVMs)

A SVM in many cases competitive with existing classification
methods T exhibits good generalization,

A Hypothesis has an explicit dependence on the data (via
the support vectors). Hence can readily interpret the
model,

A Relatively easy to use,

A Learning involves optimization of a convex function (no
false minima, unlike a neural network),

A Can implement confidence measures,

A It is straightforward to extend it to the nonlinear case using
the kernel trick.



Support Vector Classification

A Training vectors: x;,i =1, é, m
A Feature vectors. For example,
A patient = [height, weight,

A Consider a simple case with two classes
Define an indicator vector y

€1l If x; Inclassl

Yi =1 . . ,
" i-1 if x, inclass:

A A hyperplane which separates all data



Separating Hyperplanes

A separating hyperplane: wx + b =0

(w,x,)+b>0 if vy =1

(w,x,)+b<0 if y=-1

Many possible
choices of w and b




Optimal Separating Hyperplane

One to rule them all e




Optimal Separating Hyperplane
Optimal Separating Hyperplane

Note:

<Wws X >+b=+1
<W X,>+b =-1

=>  <wi(x—x,>= 2

2
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=> i 1=%:>= Twll




Maximum Margin Concept

Margin to Norm

A Separation of sets is given by ”—VZV” SO maximize
that

1
A Equivalently minimize 5lIWIl.
A Equivalently minimize %”wu2 .
Constraints
A Separation with margin, i.e.,
(w,x;)+b21 if y =1
(w,x)+b¢-1 if y,=-1
A Equivalently, ¥(w,x)+b)?1



Optimization Problem for Linearly

Separable Data 1 Hard Margin Case

A gquadratic programming problem

1

minimize §||w||2
subjectto  y((w.x;) +b)—1>0forall1</<m

Properties

A
A
A

Problem Is convex
Hence it has a unique minimum

t exists efficient algorithms to solve the problem



Data may not be linearly separable
Soft Margin Case

Recall: Hard Margin Problem
L 1 ”
minimize §||w||
subjectto  yi({w,x;) + b)—1 >0

Softening the Constraints

o 1 m
minimize E||w||2 +C) &
i=1

subjectto  yi((w.x;) +b) =1+ > 0andg; >0



Deriving Dual

Primal Problem

L 1 >
minimize §||w||
subjectto  y;({w.x;) +b) —1>0forall1 </i<m
ItS Dual L Imm m
i=1j=1 k=1

subject toc*r;inariyi =0, 0¢a;¢C j=l..m

=1

In matrix form 1
minimize EavTKav -e'a

subjecttoy'a=0, 0¢a,¢C j=1..m



Lagrangian Dual

m%(mtl)n L(w,b,x,a, b)), where

L(w,b,x,a, b)——||W|| +C4 X - aa(y|<wx>+b 1+x)- abx
[ i=1 j=

The minimum with respect to w,b and x of the Lagrangian L is
given by

p m
=0Y w=aayx
i=1 1 m
minimize =& &4 a.a. VY (XX, )- aa,
2i=1j=1 k=1

p m
=0Y aay=0——> " |
i=1 subjecttog a,y, =0, 0¢a; ¢C j=1..m

=0Y a,+b =C

TE %IF EE



Support Vector Expansion

m
Solutionis W =a a,Y,X
i=1

A w is given by a linear combination of training patterns x.. It is
Independent of the dimensionality of x.

A w depends on the Lagrange multipliers

Karush-Kuhn-Tucker Conditions
A At optimal solution Constraint x Lag. Multip. = 0 (complementarity cond.)
A In our context this means
a;(1- y,((w,x;)+b)) =0
Equivalently )
a ., oY y((w,x)+b)=1

Only points at the decision boundary can contribute to the solution



Extension to the Nonlinear Case
and Kernel Trick

y A5

We map the data points into a much higher-dimensional space through

(% X)) Y (F6).F (%)) =KX, X))

where we used the mapping X. - f(X;) .The higher dimensional space is
called feature space and it must be a Hilbert Space.



A Kernel Example

Polynomial Features in Rz F(X) := ()(f,\/é)(lxz, X2)
Dot Product
(F0) £ 06))) = (06725060, X5), OV 2,2, X))

=(x.x,)

Trick works for any polynomials of order n via <Xi ,X,->n

Some other possible kernel functions

1%, - x; |
25.2

)

Gaussian Kernel — K(X;,X;) =exXp(-

Sigmoid Kernel K(X. ,Xj) = tanh(((Xi y X > +Q)



Decision function in nonlinear case

A At optimum W =82 y/(x)

Decision Function
(W.F(x)) +b =8 a,y,(F(x).7 (x)) +b

=4 a,y,k(x,,X) +b
i=1

We use only 7(X;) with a, >0 . As a result, the solution is sparse and
real-time performance is very fast.



Linear SVM C=50




Linear SVM C=50
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Linear SVM C=50
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Insights

Changing C
U For clean data C does not matter much

U For noisy data, large C leads to narrow
margin (SVM tries to do a good job at
separating, even thoug

Noisy Data

U Clean data has few support vectors

U Noisy data leads to data in the margins
U More support vectors for noisy data



Gaussian Kernel with s =1
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Gaussian Kernel with s =5
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Gaussian Kernel with s =10




Geometrical Interpretation

SUPPORT VECTOR MACHINE CLASSIFIER

XoA

Class-1 samples

Maximum margin hyperplane
Convex Hull

Hcon_é _-r-] A —_ 200
1=1 =1

Class-2 samples




Geometrical Interpretation

Classical SVM formulation
L 1
minimize EavTKar- e'a

subjecttoy'a=0, 0¢a,¢C j=1..m
Convex hull formulation

L L T
minimize || 4 ax - aax |f minimize a Ka

ity =+1 iy =-1 . T ..
_ subjecttoy' a =0, aa, =2, O¢ai‘<!D
subjectto a a =1 aa =10¢a ¢1 J Y i

ity =+1 ity;=-1

In case of outliers, optimization problem becomes
minimize a'Ka
subject toy'a =0, 44, =2, O¢ai¢@ [ >1



Efficient SVM Software

A LIBSVM -- A Library for Support Vector Machines Using
SMO (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) and its
linear version LIBLINEAR -- A Library for Large Linear
Classification
(https://www.csie.ntu.edu.tw/~cjlin/liblinear/)

A LIBOCAS - Library implementing OCAS solver for
training linear SVM classifiers from large-scale data

(http://cmp.felk.cvut.cz/~xfrancv/ocas/html/)

A Pegasos: Primal Estimated sub-GrAdient SOlver for
SVM (http://www.cs.huji.ac.il/~shais/code/)



https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://cmp.felk.cvut.cz/~xfrancv/ocas/html/
http://www.cs.huji.ac.il/~shais/code/

Large Margin Classifiers Based on
Affine Hulls

A Convex hull approximation

I Unrealistically tight in high-dimensional spaces

I Classes typically extend beyond the convex hulls of
their training samples

A Affine hull approximation
I Rather loose approximations to the class regions

A Large-Margin Classifier Using Affine Hulls

I Maximum margin separators between pairs of affine
hulls



Large Margin Classifiers Based
on Affine Hulls

A Example: Comparison of convex and affine hulls of
samples

con e Haffine_é _n n _1U
H =Px=aax |aa L@ px=aaxlaa =1
i=1 =1

.

Convex hulls of samples is a Affine hulls of samples is a loose

tight model for approximation model for approximation of class
of class regions. regions.



Method

Binary classification problem
Training data :

(x;,v;},i =1,..,n,y; € {—1,+1},x; € R%

1. Approximate classes with affine hulls of
the class samples (training data).



Method

2. Find the maximum margin linear separating
hyperplane between affine hulls of classes.

Hyperplane equation: (w, x) +bhb =0

w : normal of the separating hyperplane
{x;,+1} => (w,x) + b > 0
{x;,—1} =2 (w,x) + b <0

The optimal separating hyperplane is the one that bisects
perpendicularly the line segment connecting the closest points



Method
1. Linearly Separable Case

The affine hulls of two classes do not intersect, i.e., they are linearly
separable, if the affine combinations of their samples satisfy the rule

Z a;xX; * Z a;x; for Z a; = Z a; =1

L:yi=+1 j:yjz—l Lyi=+1 j:yjz—l
1
HYf = {x=Uv+pu|ve R) (ﬂ=(g)z.xi>
L

U : orthonormal basis for the directions spanned by the affine subspace
V : contains the reduced coordinates of the point within the subspace

Ucanbe foundastheU-mat ri x of t h[éﬁ ‘éﬂ,-h;ixf;m'ﬁﬂ]SVD

| : number of significantly nonzero singular values



Method
1. Linearly Separable Case

Suppose two affine hulls with point sets{U, v, + p.}and{U_v_+ u_}
A closest pair of points between the two hulls can be found by solving

min |[|(U, vy +p,) — (U_v_ 4+ p )|
LA

Vv :
U= U, -U) v=(,) min UV = Ge =)l

Solution: v = U0 (u_ —u.)
Decision boundary ;: f(x) =(w,x) + b
1 1
W=E(X+—X_) =E(I_P)(ﬂ+_ﬂ—) b=-w'(x, +x)/2

P = U(U TU)—1UT » orthogonal projection onto the joint span of the directions contained in
the two subspaces

I — P : corresponding projection onto the orthogonal complement of this span

X, ,X_ : the closest points on the affine hulls of positive and negative classes



Method
2. Inseparable case

¢ Aproblem arises if the affine hulls of classes intersect, i.e., affine hulls
are not linearly separable.
Solution: Reducing affine hulls to restrict the influence of outliers.

¢ To reduce affine hulls, we use the initial affine hull formulation and
introduce upper and lower bounds on coefficients «;.

¢ Finding the closest points on the reduced affine hulls can be written as a
guadratic optimization problem:

min Z a;xX; — Z a;X;
o

Ly;j=+1 Lyj=—1

S.t. Z a; =1, Z a; =1, —T<a; <T

Lyi=+1 i:yi=—1

T : a user-chosen bound



Method
2. Inseparable case

min Z a;y; yi{X;, X;)

L

S.t. Zaiyi:[], foi: , —T<; 7T

L L

¢ This is a quadratic programming problem that can be solved using
standard optimization techniques.

c G= [ u] = ijVJ (x;, J)ls a positive semi-definite matrix, thus the
objective function is convex and a global minimum exists as in the SVM
classifier.

¢ Moreover, if the Hessian matrix is strictly positive definite, the solution is
unigue and it is guaranteed to be the global minimum.



Method
2. Inseparable case

¢ Since the coefficients are bounded between —T and +1, the solution is
determined by more points and no extreme point or noisy point can
excessively influence the solution for well-chosen T .

¢ Once we compute the optimal values of coefficients «; , the normal and
the offset of the separating hyperplane can be computed as in the linearly

separable case
1
w = E iIL-Xi - OITL-XL-

iyi=+1 y;=—1
1 T
b= oW a;x; + a;X;
Ly =+1 Ly =—1

¢ We call this method Large Margin Classifier of Affine Hulls (LMC-AH).



Method

2. Extension to the nonlinear case

¢ If the underlying geometry of the classes is highly complex and
nonlinear, we can map the data into a higher-dimensional space where the
classes can be approximated with linear affine hulls.

¢ Note that the objective function is written in terms of the dot products of
samples, which allows the use of the kernel trick.

Replacing (X;,X;) with k(xi,xj) = {qb(xi),(b(xj))
o: R*P> S

ferd

¢ : mapping function from the input space to the mapped space 3

¢ As a result, more complex nonlinear decision boundaries between
classes can be approximated by using this trick.



Large-Margin Classifiers Using
Hyperdisks

A The hyperdisk class model is the intersection of the

smallest bounding hypersphere and affine hull of the
training samples.

__________________
______________________

7/ \ /
g — /
/ v \ \ /
/ e\ /
Class region | Bounding hyperdisk \; S
\ of training samples A /
\\o\, )/, !
\ ——— g /

________
T (S e o (VR " o Vi 0 - e

AThe approximation is still somewhat loose, but it does
encode both the relevant variables and the region occupied
by the class within their subspace.

AThe hypersphere is computed by solving a quadratic
program (see below). Distance computations are trivial.



Hyperdisk Formulation

Computing the Bounding Hyperdisk #1

Project training and test samples onto affine hull of class:

Mo = NLG N°1 Xc = mean of training samples of class €

U. = “U” matrix of thin truncated SVD of centred data {ch - MC}J:L...,NC

X = U (X — p.) = projection of sample X onto affine hull, in U coordinates

Find bounding hypersphere within affine hull, centre s, radius r,:

Primal: min r2 +~Y,& with [|[Xg — 8|2 < 12 + &, Vi
W:rChg

Dual: mln ZU Qv Oc}.' ij Z! g HXC;H with Z! Qj — 1, 0 § Qvf é Y, \V/!
SC :UC SC + I’I’Ct' SC — Z!Oc; icj, rC — Hic; - §CH \V/l' Wlth 0 < 8y < ¥

Here, v € [0, 1] is an outlier fraction



Method
Linearly separable case

Since we can write an hyperdisk of a class as below
d' k _ _ (L] NC L] _ 2
HCIS _{X_ai:]_aixci |aiai _1’ lea_ SC ”2¢ r }

Finding the closest points on the hyperdisk of classes can be
written as the following optimization problem

min ”Xlol_ Xzoz ”2

a.,a,

st aa;=1 and ga, =1
j

”Xol - Sa ”2¢ rlz’ ”on - S ||2¢ rzz’



Method
Linearly separable case

If we rewrite the optimization problem by using matrices, the
optimization problem becomes

min U GU

st. Ueg=1 and Ue,=1
UIGlol' 201)(151 ¢ r12 - SISv
U;Gzoz B ZD;X;SZ ¢ r22 - S;SZ

whereG=(yo6*y) ([ X1 X2]06*[ X1 X2]), G1=X106"
This is a convex problem since the Hessian matrix G and the other

quadratic term matrices G1 and G2 are positive semi-definite. Thus
a global minimum exists as in SVM classifier.



Motivations for Replacing the Nearest-
Convex-Model Approaches with Margin-
Based Ones

A The pairwise decision boundaries (surfaces
equidistant from the two convex models) returned by
the nearest convex model classifiers are generically at
least quadratic or piecewise quadratic in complexity.

A For example for affine hulls they are generically
hyperboloids. Such decision boundaries are more
flexible than linear ones, but in high dimensions when
the training data is scarce this may lead to overfitting,
thus damaging generalization performance.



PART Il T EXTENSION TO THE
MULTI-CLASS CASE

Main idea Is to combine binary classifiers
systematically

U One-Against-Rest

U One-Against-One

U Directed Acyclic Graphs (DAGS)

U Binary Hierarchical Decision Trees (BHDTS)



One-Against-Rest (OAR)

Training: For each class build a classifier for that class
against the rest (If there are C classifiers this
corresponds to C binary classifiers).

Testing: Label of a test sample is determined based on
the highest output value of the classifier in the
ensemble.

Limitations:

AOften very imbalanced classifiers

AComputationally expensive since the quadratic programming
problem operates on large matrices



One-Against-One (OAQO)

Training: Train all possible C(C-1)/2 binary classifiers out of
C classes.

Testing: The decision of the ensemble is decided by max
wins strategy: each OAQ classifier casts one vote for its
preferred class, and the final decision is the class with
the most votes.

Limitations:

A It works well the number of classes is small and it is
usually faster than OAR strategy.

A The total number of classifiers grows quadratically with
the number of classes, and hence, becomes prohibitively
expensive when C is large.



Directed Acyclic Graphs (DAGS)

1, ™,
g 1vs4
4 .
2 &j 4
not 1 not 4 2 4 test points on this
side of hyperplane
cannot be in class 1
2 - . 7
3;_21.-’54_; 2. 1vs3 |
nc% HD\/L 1 not 3
35 3vs 4 ) 2::. 2vs 3 ) 1-'; 1~.r52 i
al ) 3l . 2| i 1 vs 4 SVM
1111
1 1 1 test points on this
side of hypemlans
cannot be in class 4

(b)

Figure 1: (a) The decision DAG for finding the best class out of four classes. The equivalent
list state for each node is shown next to that node. (b) A diagram of the input space of a
four-class problem. A 1-v-1 SVM can only exclude one class from consideration.



Binary Hierarchical Decision Trees

.

O,

X e A
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AA well-balanced tree requires
approximately log_2(C)
classifier evaluations for
traversing a path from the top
to a bottom decision node.
This results in a more efficient
structure as compared to the
DDAG algorithm in terms of
testing time.

AThe accuracy depends on
the tree structure that creates
well-balanced separable
Image class groups at each
node of the tree.



Binary Hierarchical Decision Trees

A ® A
A @ A
BHDTs use use clustering algorithms to ada | O alda
split the data in each node (k-means, 2 g T
spherical shells, Ncuts clustering, etc.) P PR H

Alt should be noted that k-means based clustering methods do not
target margin maximization between classes. But SVM classifiers work
based on margin maximization.

AThis must be compatible with our goal, which is grouping classes
with the largest margin possible. Therefore, we approximate each
class with a convex hull and use the convex hulls distances between
pair-wise image classes to create a similarity matrix.

AWe use NCuts clustering at each node to split the classes such that
they are separated with the maximum margin.



Part 3- Beyond Large Margin Classifiers
Transductive SVMs

A Supervised learning methods use
labeled data.

A In real worl applications, only a small
fraction of data samples are labeled
and there are abundant unlabaled
data since manual labeling is a slow
and error-prone process. For
example, web and text categorization,
genomics applications.

A We can use unlabeled data to find
better separators.




(i

Important Transductive SVM
Methods In Literature

V. Vapnik, A. Sterin. On structural risk minimization or overall
risk in a problem of pattern recognition. Automation and
Remote Control, 10:14951 1503,1977.

K. Bennett and A. Demiriz. Semi-supervised support vector
machines. In Neural Information Processing Systems, 1998.

T. Joachims. Transductive inference for text classification
using support vector machines. In International Conference
on Machine Learning, 1999.

O. Chapelle and A. Zien. Semi-supervised classification by
low density separation. In Proceedings of 10th International
Workshop on Artifical Intelligence and Statistics, 2005.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale
transductive svms. Journal of Machine Learning Research,
7:16871 1712, 2006.



METHOD

L :{(Xl,yl),...,(XL,yL),XI' A yi {+1- ]}} L labeled data samples

U :{XL+1,...,XL+U} U unlabeled data samples

Goal: Finding a separating hyperplane that will best separate the labeled
data samples and will be far from the unlabeled data samples.

: 1, 2 L . LU
argmin EHWH +Cax+C ax
i=1

w,b i=L+1

st. y(w'x +b)21-x, i=1..L
w'x +b2 1- x, i=L+1..,L+U
1. 1w

U ai:L+1(WTXi + b) = %aiLzl Y,



Problem Setup

A Optimization problem can be written by using Hinge losses as the
following,

. 1 2 L T * L_-':U T
argmin EHWH +Ca H, (y,(W'x; +b)) +C" & Hy(w'x, +b)
=1 i=L+1

/ o

H,(t) = max(0,1 —t)

Noisy labeled data will dominate the second term!



Method - Problem Setup

Labeled Data

Robust Transductive SVMs use a more robust Ramp loss that is less
affected from noisy examples compared to the Hinge loss.

\_
/

Ramp loss function R(t) =H,(t) - H.(t) classical Hinge loss H,(t) =max01- t)

and - H.(t) =- max(Q,s- t)



Method - Problem Setup

Unlabeled data

22 T T T T T

2r 4
13F 4
15k 4
14F 4
12

—t—

H, ({t)) = max©.1- |t) SR(t) =R(t) + R(- 1)




METHQOD

After these changes, the optimization problem becomes:

argmin —HWH +Ca Rs(yI (w'x. +b))+C LéUSFg(W X. +b)

i=L+1

The optimization problem can be written as the sum of convex and
concave functions, or difference of two convex functions

J (Q) = JCOI’]VG)(q) + Jconcavgq)

L+2U

Jeomel@) = —HwH +<:a H, (v (W%, +0))+C & H, [y, (w™x, +b))

i=L+1

L+2U

Jeomand @) = - C8 H, (3, (W' #0)- € 8 H, [y, (w'x,+0)

i=L+1



METHOD

Since the optimization problem can be written as the sum of convex and
concave cost functions, we can use i C o n cGomvex Procedure ( CCR9Q 0
solve it.

J (Q) — JCOﬂVG)(Q) + JCOHC&V&Q)

CCP basically decomposes a non-convex function into a convex and
concave part and it solves the problem by an iterative procedure where
each iteration approximate the concave part by its tanget and minimized the
resulting convex function.

g™ =argmin(J.,,e(q) + J concard 7)q)
q



METHOD

Algorithm 2 The Robust Transductive Support Vector Machines (RTSVM)

Initialize #° = (w°,b°). t =0, €1 > 0. €2 > 0

Compute
C, ify((w’) xi+b°)<sand1<i<L

BY = y,ﬂa_m(—)(ﬂ ={ C*, ify((W)Tx; +8°) <sand L+1<i<L+2U
0, otherwise.

while ||w; 1 — w¢|| > €1 or ||B, 1 — By]| = €2 do
— Solve the following convex minimization problem by using SG algorithm given in Algorithm 3
arg min Lwl? + CX ) Hi(yi(wTx; + b)) + C* 227 Hi(yi(wTxi + b)) + 25027 Bis(w T xi + b)
such thdt é ZL'H wix;+b) = %Zf;l Yi

— Set witl =w, bttl =p:

— Compute
C, ify((w™) xi4+b)<sand1<i<L
Bf+1 =< ¢, fy(W™) xi+b")<sand L+1<i<L+2U
0, otherwise.
—Sett=1t+1;

end while




METHOD

Algorithm 3 Stochastic Gradient Based Solver with Pro-

jection .
Initialize In contrast to the methods using
Wi, bi. T >0, 2 >0, >0 GSMO (GSMO-Generalized
Description: Sequential Minimal optimization),
for &yl do RTSVM uses Stochastic-Gradient to
At < Ao/t;

solve the convex optimization
problem. This makes sure that the
method scales well with lareg-scale

for i € randperm(L + 2U) do
— Compute sub-gradients

- —yiC(C*)xi + Biyixi, if yi(wfx,- +b) <1
o

Biyixi, yi(w'x; +0) > 1. 11
ht _ _yicv(cv*) +‘Biyi~ if yi(vaxi 4= b) S 1 data -
Bivi, y.l-(WTXi +b) > 1. . .
~ Update hypej\'plune parameters For the equality constraint, the
Wi ¢ Wy — W(Wf +8t) problem is first solved with ignoring
by +— by — T‘f?b’hi

— Project parameters onto the feasible set imposed
by the constraint
(W't._ bl) = P(VC’{ bt)
end for
if (t>2) & (||we — wi—1]| < €), break
end for

that constraint and then the
parameters are projected onto the
feasible set that satisfy the
constraint.



Experiments on a Synthetic Dataset
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Best-Fitting Hyperplane Classifiers

Classical Classification & Open Set
Recognition
Classical Classification

Training: We train classifiers by using labeled data
samples belonging to some specific classes.

Testing: Learned classifiers are used to label samples
belonging to the same classes used in the training.

Open Set Recognition

Training: We train classifiers by using labeled data
samples belonging to some specific classes as In
classical classification setup.

Testing: Test samples can come from the unknown
classes not seen during the training.



Classical Classification & Open Set
Recognition

The separating hyperplane S returned by the SVM classifier separates
people and dog classes. All samples under the separating hyperplane are
assigned to the dog class. When there are test samples coming from the
unknown classes such as chair and fish, these samples will be
erroneously assigned to the dog class with high confidence scores.
Adding another parallel hyperplane H helps to localize dog class samples
better, and misclassifications can be reduced.



