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Abstract

We propose large margin classifiers that are sometimes
better than Support Vector Machines (SVMs) for high-
dimensional classification problems with limited numbers
of training samples. The basic idea is to approximate each
class with a convex model of some form based on its training
samples. For any pair of models of this form, there is a cor-
responding linear classifier that maximizes the margin be-
tween the models, and this can be found efficiently by solv-
ing a convex program that finds the closest pair of points in
the two sets. If the classes are modeled with the convex hulls
of their samples the result is the standard SVM, but many
other convex models are possible. As examples we inves-
tigate maximum margin classifiers based on affine hull and
bounding hyperdisk models. These methods can also be ker-
nelized by working in orthonormal coordinates on the sub-
space of feature space spanned by the training samples. We
compare the resulting margin-between-convex-model meth-
ods to SVM and to the corresponding nearest-convex-model
classifiers on several data sets, showing that they are often
competitive with these well-established approaches.

1. Introduction
High-dimensional classification problems with limited

numbers of training samples are becoming increasingly
common in various fields including computer vision, text
classification and genetic microarrays. Simple locality
based classifiers such as Nearest Neighbors (NN) tend
to perform poorly in such problems because the avail-
able training samples do not suffice to cover the high-
dimensional class regions densely. The resulting sparse and
irregular distributions of samples leave many “holes”, lead-
ing to classification errors when the nearest sample happens
to have the wrong class [16].

Two kinds of strategies for dealing with this have been
very successful. The first seeks low-dimensional projec-
tions that suffice to separate the data. The prototypical
method of this kind is the two-class Support Vector Ma-
chine (SVM) [1,4], which seeks a 1D projection that maxi-

mizes the separation (“margin”) between the boundaries of
the projected class samples. Intuitively this works because
in low dimensions, a comparatively small number of sam-
ples suffices to densely fill, and hence characterize, the re-
gions spanned by the classes.

The second strategy attempts to “fill in the holes” in the
original high dimensional space by using the training sam-
ples to build a simple geometric model of each class that
approximates the region spanned by it better than the iso-
lated samples themselves. The most successful approaches
of this kind have used various kinds of convex models in-
cluding linear subspaces [18,12], affine hulls [16,7,6], con-
vex hulls [11], bounding hyperspheres [15] and bounding
hyperdisks [3]1. Convex models are natural choices because
they intrinsically “fill in the holes” and because the compu-
tations that are needed to classify new examples such as
point-model or model-model distances are efficient owing
to convexity.

The methods just cited are “nearest neighbor” ones – or
more precisely “nearest convex model” ones – in the sense
that they classify new examples to the class whose convex
model is nearest to the example. This paper investigates an
alternative “margin between convex model” strategy that is
based on explicitly building linear maximum margin sepa-
rators between pairs of convex models. As a first example
of the power of this approach, note that the SVM itself is
the maximum margin linear separator between the convex
hulls of the training samples of the two classes [1].

One motivation for replacing nearest-convex-model ap-
proaches with margin-based ones is that for all of the above
cited approaches, the pairwise decision boundaries (sur-
faces equidistant from the two convex models) are gener-
ically at least quadratic or piecewise quadratic in complex-
ity. For example for affine hulls they are generically hyper-
boloids. Such decision boundaries are more flexible than
linear ones, but in high dimensions when the training data
is scarce this may lead to overfitting, thus damaging gen-

1The affine hull is the smallest affine (shifted linear) subspace contain-
ing the training samples, the convex hull is the smallest convex set contain-
ing them, the bounding hypersphere is the smallest spherical ball contain-
ing them, and the bounding hyperdisk is the disk shaped region formed by
the intersection of the affine hull and the bounding hypersphere.



eralization to unseen examples. Linear margin based ap-
proaches have fewer degrees of freedom, so they are typi-
cally less sensitive to the precise arrangement of the train-
ing samples. For example for an SVM classifier, motions of
the SVM support vectors parallel to the SVM decision sur-
face do not alter the margin and hence do not invalidate the
classifier (although they might allow an even better one to
be found), whereas they do typically change the piecewise
quadratic decision surface of the equivalent nearest-convex-
hull classifier.

There are also reasons for thinking that for some prob-
lems, SVM may not be the best way to formulate margin
based classification. The convex hull model on which it
is based is the tightest possible convex approximation to
the training samples. For classes with more generous con-
vex forms, it is typically a substantial under-approximation.
For example for classes that are ellipsoids or boxes in high
dimensions and for any placement of any number of sam-
ples sub-exponential in the dimension, the volume of their
convex hull is exponentially smaller than the volume of the
class. Similarly, for Gaussians the convex hull of any proba-
ble placement of a sub-exponential number of samples con-
tains exponentially little probability mass, while for classes
supported by affine hulls with long-tailed distributions of
samples within the hull, the extent of the class can be almost
infinitely underestimated by any finite number of training
samples.

Natural classes almost always “bulge beyond the sam-
ples” in this sense, leading to fitted margins that sometimes
substantially over-estimate the true inter-class margin. This
does not invalidate the usual SVM performance bounds –
which essentially guarantee that the volumes or probabili-
ties of the “scalps” cut off by the over-estimated margins are
almost always exponentially smaller than the correspond-
ing class volumes or probabilities – but it does suggest
that models that take better account of the true form of the
classes might provide somewhat better inter-class separa-
tors. Indeed, particularly for problems with small numbers
of samples in high dimensions, the experiments below con-
firm that the affine hull and bounding hyperdisk margin ma-
chines often compare favourably with the equivalent SVM
(convex hull margin machine). A similar conclusion was
reached for the corresponding nearest-convex-model clas-
sifiers in [3,16] – convex hulls of samples are often out-
performed by simpler convex models such as affine hulls or
hyperdisks.

Another motivation for studying margin-between-
convex-model approaches is their potential flexibility and
compactness. The affine, hypersphere and hyperdisk mod-
els allow each class to be fitted individually and represented
compactly, following which the linear separator between
any two classes can be found quickly by an efficient convex
calculation. This allows classes to be easily added, removed

or modified. In contrast, updating SVM based representa-
tions potentially requires the storage of every sample on the
convex hull of each class, with SVM retraining following
each modification. This can be very expensive.

1.1. Related Work

Our work generalizes the SVM [1,4] maximum margin
approach to convex class models that differ from the convex
hull of the samples. In particular we develop the affine hull
[16] and bounding hyperdisk [3] margin classifiers and pro-
vide direct experimental comparisons with the correspond-
ing nearest-convex-model methods tested in [3].

Cevikalp et al. [2] discuss a related margin based fea-
ture extraction method in which weighted separation vec-
tors from samples to convex models are used to find a set
of projection directions (features) that provide good multi-
class discrimination under nearest neighbour classification.

There are many other linear discriminant based classi-
fiers such as perceptrons, decision trees, etc., but we will
not consider these here as they are not based on (simple)
underlying geometric models of the classes. Our models
are compromises chosen to provide reasonable representa-
tional power with modest and well-controlled complexity,
thus avoiding the full combinatorial complexity (and poten-
tial for overfitting) of generic high-dimensional geometric
models. Similarly, in high dimensional problems there is
seldom enough data to do more than roughly delimit the
region occupied by the class, so we typically prefer a ge-
ometric (region based) approach to a probabilistic (density
modelling) one.

2. General Approach
Basically, our method consists of using the training sam-

ples of each class to build a convex model of the given type
(affine hull, bounding hyperdisk, etc.) for it, then finding
the maximum margin linear separator for the two models,
i.e. the vector w with minimal norm such that w>x+ b ≥ 1
for all points x in the first class and w>x + b ≤ −1 for all
points x in the second class. The final decision rule assigns
test points to the first class iff w>x + b > 0.

w can be estimated by finding a closest pair of points
between the two models – i.e. points x+ in the first model
and x− in the second such that ‖x+ − x−‖ is as small as
possible – and taking w = 2(x+ − x−)/‖x+ − x−‖2 and
b = (‖x−‖2 − ‖x+‖2)/‖x+ − x−‖2. The closest point
problem reduces to the convex program minimizing ‖x+ −
x−‖2 under within-class-model constraints for x+ and x−.
In degenerate cases the solution for x+ and x− may not
be unique, however the corresponding minimal-norm w is
always unique. In this paper we will always assume that the
class models do not intersect one another, so that such pairs
of points always exist and separation with a positive margin



is possible. (If not, the notion of margin can be extended
to negative values by defining w to be the smallest-norm
translation vector that just separates the two classes. But
we will not pursue this here).

The above construction is for the two-class case. To han-
dle multi-class problems, any of the standard strategies for
extending SVM’s can be used. Below we test the two most
popular approaches: One-Against-Rest (OAR) and One-
Against-One (OAO). For a c-class problem, the OAR strat-
egy trains c binary classifiers, one to separate each class
from the remaining c−1 classes. Each classifier is trained
on the entire training set. Test samples are classified to the
class whose classifier gives the highest output in the ensem-
ble. In contrast, the OAO strategy constructs c(c − 1)/2
classifiers, one for each possible pair of classes, in each case
using only the training data for that particular pair. New
examples are classified by a majority vote algorithm, with
each OAO classifier casting a vote for its preferred class
for the example. Other notable approaches include Directed
Acyclic Graphs [13] and Binary Decision trees [17], but we
will not test these here.

3. Affine Hull Model

Now consider the case where each class is modelled
by the affine hull of its training samples, i.e. the smallest
affine subspace containing them. This is an unbounded, and
hence typically rather loose, model for the class. The affine
hull of samples {xi}i=1,...,n contains all points of the form∑n

i=1 αi xi with
∑n

i=1 αi = 1. Below it will be more con-
venient to write this explicitly as {x = Uv + µ |v ∈ IRl},
where µ = (1/n)

∑
i xi is the mean of the samples (or

any other reference point in the hull) and U is an or-
thonormal basis for the directions spanned by the affine
subspace. The vector v contains the reduced coordinates
of the point within the subspace, expressed with respect
to the basis U. Numerically, U can be found as the U-
matrix of the ‘thin’ Singular Value Decomposition (SVD)
of [x1−µ, . . . ,xn−µ]. Here, ‘thin’ indicates that we take
only the columns of U corresponding to “significantly non-
zero” singular values λk. l is the number of such non-zero
singular values.

The above subspace estimation process is essentially or-
thogonal least squares fitting. Discarding near-zero singu-
lar values corresponds to discarding directions that appear
to be predominantly “noise”. Unfortunately, least squares
estimates are sensitive to outliers in the training samples,
which will typically force unwanted directions to be added
to the hull. As an alternative, the samples can be fitted with
some other more robust subspace estimation process. In the
experiments we test both ‘L2’ methods based on conven-
tional least squares and ‘L1’ methods based on the L1-norm
Rotationally Invariant PCA of Ding et al. [5].

Now suppose that we have two affine hulls with point
sets {U+ v+ + µ+} and {U− v− + µ−}. (These can be
estimated with either L2 or L1 fitting and they may have
different numbers of dimensions l, but we assume that the
hulls are non-intersecting). A closest pair of points between
the two hulls can be found by solving

min
v+,v−

||(U+v+ + µ+)− (U−v− + µ−)||2. (1)

Defining U ≡
(
U+ −U−

)
and v ≡

( v+
v−

)
, this can be

written as the standard least squares problem

min
v
||U v − (µ− − µ+)||2 (2)

whose solution is v = (U>U)−1U>(µ− − µ+), i.e. w ∝
x+−x− = (I−P)(µ+−µ−) where P = U (U>U)−1U>

is the orthogonal projection onto the joint span of the di-
rections contained in the two subspaces and I − P is the
corresponding projection onto the orthogonal complement
of this span2.

4. Hyperdisk Case
The hyperdisk model of a class [3] is the intersection

of the affine hull and the smallest bounding hypersphere of
its training samples. It thus consists of points of the form∑n

i=1 αi xi where
∑n

i=1 αi = 1 as before and in addition
‖
∑n

i=1 αi xi − c‖2 ≤ r2. Here, c is the center of the
bounding hypersphere and r is its radius. The hyperdisk
can found by solving a quadratic program that minimizes r
under the above constraints, with c as free variables. Al-
ternatively, given an orthonormal basis U for the affine hull
of the points {xi} as above, the hyperdisk can be written{
x = U v + c | ‖v‖2 ≤ r2

}
, where each training point xi

must have an expansion vi of this form. The disk can again
be found by solving a quadratic program that minimizes r –
see e.g. [3].

Given two (non-intersecting) hyperdisks (c+,U+, r+)
and (c−,U−, r−), we can find their maximum margin sep-
arator by using Lagrange multipliers to find points v+,v−
that minimize the inter-disk distance

arg min
v+,v−

‖(U+ v+ + c+)− (U− v− + c−)‖2 (3)

subject to ‖v+‖2 ≤ r2+ and ‖v−‖2 ≤ r2−. Introducing La-
grange multipliers λ+−1 and λ−−1 for the two inequality
constraints, this reduces to solving the linear system(

λ+ I −U>+U−
−U>−U+ λ− I

)(
v+

v−

)
=
(
−U>+
U>−

)
(c+−c−) (4)

2If the two subspaces share common directions, U>U is not invert-
ible and the solution for (v+,v−) and (x+,x−) is non-unique, but the
orthogonal complement remains well defined, giving a unique minimum
norm separator w. Numerically all cases can be handled by finding Ũ, the
U matrix of the thin SVD of U, and taking P = Ũ>Ũ.



subject to λ+ ≥ 1, λ− ≥ 1. (Here λ+, λ− are one plus
the usual Lagrange multipliers, with the ones coming from
the inclusion of U>+ U+ = I and U>−U− = I terms on the
diagonal of the matrix).

We now need to choose (λ+, λ−) (≥ 1) so that the so-
lution of this system satisfies ‖v+‖2 ≤ r2+, ‖v−‖2 ≤ r2−.
This can be done efficiently by a 2D Newton root-finding
process analogous to the 1D one used by eigenvalue find-
ers. First, note that by changing coordinates to the prin-
cipal angle basis between the supporting affine subspaces
of the hyperdisks, and hence diagonalizing the off-diagonal
blocks of the matrix, the linear system can be reduced to
a set of decoupled 2×2 subsystems. The SVD of U>+ U−
gives the necessary linear bases, with the singular values
being the cosines of the corresponding principal angles. (In
cases where there is no principal angle or the angle is 90
degrees, the equations separate further to sets of two 1×1
ones). For any given (λ+, λ−), we can solve these equa-
tions in closed form to find (v+,v−).

To find (λ+, λ−) we run a Newton root finding iter-
ation on the 2D equation (v>+ v+,v>− v−) = (r2+, r

2
−)

with (v+,v−) as functions of (λ+, λ−). This holds for
(λ+, λ−) > 1. If either λ+ or λ− becomes 1 (indicat-
ing that the solution is interior to the corresponding disk
so that the norm constraint on v is inactive), we use the
Newton method to solve the corresponding 1D equation for
the remaining variable. In either case the process converges
rapidly, usually within about 3-5 iterations.

Finally, given (v+,v−) it is trivial to find the closest pair
of points in the two disks and the maximum margin separa-
tor w ∝ (U+ v++c+)−(U− v−+c−) with w>x+b ≥ 1
for disk 1, ≤ −1 for disk 2.

5. Kernelization
The above methods are based on convex models and lin-

ear separation in the input feature space. If more nonlin-
ear classifiers are needed – e.g. because the feature space
is too low-dimensional to allow the linear separation of all
classes – it is straightforward to kernelize them. Basically
this is just a matter of using the training samples to con-
struct an explicit orthogonal basis for the finite dimensional
subspace of the (possibly infinite dimensional and implicit)
kernel feature space that they span. This allows all of the
required (intrinsic Euclidean geometry) constructions to be
performed explicitly in finite dimensional subspace coordi-
nates. Test samples are projected orthogonally into the same
subspace by kernel evaluation against the training samples,
so their orthogonal deviations from the subspace are irrel-
evant. The bases need to be constructed using the train-
ing samples of all participating classes, i.e. of the pair of
classes being separated for OAO methods and of all classes
for OAR methods. Additional samples (subspace dimen-
sions) can be included if desired, although this makes the

computation more expensive and potentially less well con-
ditioned.

In detail – c.f . KPCA [14] – let φ(·) be the implicit fea-
ture space embedding and k(x,y) = φ>(x) φ(y) be the
corresponding kernel function. Suppose that we want to
project points x onto the affine hull of a given set of samples
{xi}i=1,...,m. Let Φ = [φ(x1), . . . ,φ(xm)] be their fea-
ture space embedding matrix, K = Φ>Φ = [k(xi,xj)] be
their m×m kernel matrix and kx = Φ>φ(x) = [k(xi,x)]
be the m × 1 kernel vector of x against the samples. The
feature space mean of the samples is µ = 1

mΦ 1m (where
1m is an m-vector of 1’s). So the matrix of centered sam-
ple features is [φ(x1)−µ, . . . ,φ(xm)−µ] = Φ Π, where
Π = I − 1

m 1m 1>m is the orthogonal projection in sample
space that implements subtraction of the mean on Φ. If φ
were an explicit embedding, the thin SVD UDV> of Φ Π
would yield an orthogonal basis U = Φ Π V D−1 = Φ A>

for the affine subspace, where A = D−1V>Π. (We use a
‘thin’ SVD containing only the significantly non-zero sin-
gular values, so D is invertible). Although we can not cal-
culate this SVD explicitly, we can get the same result by
taking the corresponding thin eigendecomposition VΛV>

of the centred kernel matrix K̃ = (Φ Π)>(Φ Π) = Π K Π
and defining D = Λ1/2, i.e. A = Λ−1/2 V>Π. In either
case, the projection of a new sample x onto U coordinates
in the affine hull is then simply U>φ(x) = A kx.

Alternatively we can work in terms of linear spans rather
than affine ones, when necessary subtracting the mean ex-
plicitly after reduction to U coordinates. The same formu-
lae apply with Π omitted.

6. Experiments
We tested linear and kernelized versions of the proposed

Affine Hull Margin Classifier (AHMC) and Hyperdisk Mar-
gin Classifier (HDMC) on a number of data sets, com-
paring them to SVM (i.e. the Convex Hull Margin Classi-
fier) and to the corresponding nearest-convex-set classifiers
from [3]: Nearest Affine Hull (NAH), Nearest Hyperdisk
(NHD), and Nearest Convex Hull (NCH). For the AHMC
and HDMC methods, we compared two methods of estimat-
ing the underlying affine subspaces, standard least squares
(‘-L2’ variants) and L1 norm Rotationally Invariant PCA
[5] (‘-L1’ variants). In each case we estimated the subspace
dimension by retaining enough leading eigenvectors to ac-
count for 95–98% of the total energy in the eigendecompo-
sition. For the multi-class margin classifiers we tested both
One-Against-Rest (OAR) and One-Against-One (OAO) ap-
proaches, reporting the results of whichever was best.

The linear versions of the above methods were tested
on an instructive toy problem and on visual recognition
problems from the AR Face, Birds, Coil-100 and Xerox-
10 data sets. The kernelized versions were tested on five
low-dimensional problems from the UCI repository.



40

50

60

70

80

90

100

25 50 75 100 125 150 175 200

Number of Samples

Cl
as

si
fic

at
io

n 
R

at
e

AHMC-L1
AHMC-L2
HDMC-L1
HDMC-L2
SVM
NAH
NHD
NCH

 Figure 1. Classification rates as a function of number of training
samples for the ‘Pancake’ data set.

6.1. Experiments on Synthetic ‘Pancake’ Data Set

We begin by illustrating some properties of the proposed
methods with experiments on the 4-class synthetic data set
from [3]. This was produced by creating four unit-radius
spheres (one for each class) in 300 dimensions with centres
(±0.2,±0.2, 0, . . . , 0), sampling test and training points
uniformly within each sphere, then compressing 200 of the
dimensions including the second one by a factor of 10. This
produces a high dimensional data set containing two aligned
stacks of two 100D-pancake like classes, with many irrele-
vant variables.

Beginning with n = 25 samples per class, we gradually
increased the number of training samples up to 200, using
the remaining 1000 − n for testing. The results are shown
in Fig. 1, using OAR for the margin based classifiers. With
these numbers of samples, the nearest convex set classifiers
perform poorly compared to the margin based ones. All of
the margin based methods have similar accuracy for n =
25, 50, but the affine hull and hyperdisk ones dominate for
n = 75, 100, only to be surpassed by SVM for n ≥ 150
(at which point the samples start to become dense enough
to fill out the convex hulls of the classes to a significant
extent). The L1 and L2 subspace estimates yield similar
performance.

6.2. Experiments on the AR Face Data Set

The AR Face data set [10] contains 26 frontal images
with different facial expressions, illumination conditions
and occlusions for each of 126 subjects, recorded in two
13-image sessions spaced by 14 days. For this experiment
we randomly selected 20 male and 20 female subjects. The
images were down-scaled (from 768× 576), aligned so that
the centers of the two eyes fell at fixed coordinates, then
cropped to size 105 × 78. Fig. 2 shows some of the result-
ing images of one subject. Raw pixel values were used as
features. For training we randomly selected n = 7, 13, 20
samples for each individual, keeping the remaining 26 − n
for testing. This process was repeated 10 times, with the

Figure 2. Aligned images of one subject from the AR Face data
set.

AR n = 7 n = 13 n = 20
AHMC-L1 95.12± 0.5 98.88± 0.2 99.62± 0.3
AHMC-L2 95.19± 0.6 98.95± 0.3 99.62± 0.3
HDMC-L1 95.32± 0.7 98.86± 0.5 99.74± 0.2
HDMC-L2 95.20± 0.7 98.80± 0.4 99.76± 0.2
SVM 94.54± 0.6 98.66± 0.2 99.58± 0.3
NAH 76.45± 1.8 95.96± 1.8 98.85± 0.9
NHD 75.62± 1.6 95.05± 2.1 98.65± 0.7
NCH 60.73± 0.9 80.00± 2.3 92.08± 1.8

Table 1. Classification Rates (%) for the linear methods on the AR
Face data set.

final classification rates being obtained by averaging the 10
results.

The results are shown in Table 1. The performance dif-
ferences are most apparent for n = 7. As in the previous
experiment, the large margin classifiers outperformed the
nearest convex set ones, with the OAR variants being pre-
ferred for the margin based methods. Among the nearest
convex set classifiers, NAH and NHD clearly outperformed
NCH. Similarly, the AHMC (affine hull) and HDMC (hy-
perdisk) margin classifiers outperformed SVM (convex hull
margin classifier), with the L1 and L2 variants of AHMC
and HDMG all giving similar results. Overall these results
support our claims, suggesting that affine hulls and hyper-
disks can be better models for representing classes in high-
dimensional spaces when the number of samples is limited.

6.3. Experiments on the Birds Data Set

The Birds data set contains 100 images each of six
species of birds in the wild [8]. It is a challenging vi-
sual recognition task with the birds appearing against highly
cluttered backgrounds and the images having large intra-
class, scale, and viewpoint variability. We use a “bag of
features” representation for the images as they are too di-
verse to allow simple geometric alignment of their objects.
In this method, patches are sampled from the image at many
different positions and scales (densely, randomly or based



Birds n = 25 n = 50 n = 75
AHMC-L1 88.80± 1.3 92.00± 1.1 91.93± 2.0
AHMC-L2 88.78± 1.3 91.94± 1.2 91.73± 2.1
HDMC-L1 89.62± 1.4 92.27± 1.3 92.53± 1.8
HDMC-L2 89.60± 1.2 92.50± 1.1 92.60± 1.7
SVM 89.53± 1.3 92.53± 1.3 92.20± 1.3
NAH 87.24± 1.6 90.43± 1.1 91.67± 1.7
NHD 87.24± 1.6 90.43± 1.1 91.67± 1.7
NCH 87.22± 1.5 90.77± 1.3 92.27± 1.8

Table 2. Classification Rates (%) for the linear methods on the
Birds data set.
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 Figure 3. Classification rates as a function of number of training
samples for the Coil data set.

on the output of some salient region detector), coded, and
pooled to characterize the image. Here we used a dense
grid of patches, with each patch being coded using the ro-
bust visual descriptor SIFT [9] and vector quantized using
nearest neighbor assignment against a 2000 word visual dic-
tionary learned from the complete set of training patches.
For training we randomly selected n = 25, 50, 75 images
of each class, keeping the remaining 100−n for testing. Ta-
ble 2 summarizes the results, which are again averages of 10
random training/test splits. For the margin based methods,
the OAR approach again gave the best accuracies. Overall,
HDMC achieves the best classification rates for n = 25, 75
while SVM wins for n = 50. The margin based methods
again outperform the nearest convex set ones, and HDMC
outperforms AHMC, but the differences in performance are
small, especially for n = 75.

6.4. Experiments on the Coil100 Object Data Set

The Coil100 data set3 includes 72 views each of 100
small objects against a flat background, taken at 5◦ orien-
tation intervals on a turntable. The size of each image is
128×128. We randomly chose 40 objects from the data set.
We used raw grayscale pixel values as input features with-

3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Figure 4. Some images from the Xerox10 data set.

out applying any further visual preprocessing. For training
we randomly selected n = 5, 10, ..., 60 images of each ob-
ject, keeping the remaining 72 − n for testing. As before,
we report averages over 10 random test/training splits – see
Fig. 3. For the margin based methods, the OAO approach
gave the best performance. All of the margin based classi-
fiers gave almost identical results, as did all of the nearest
convex set classifiers, with the latter being the better per-
formers. (In contrast, for the OAR approach, SVM slightly
outperformed HDMC and both significantly outperformed
AHMC – presumably because the large ‘Rest’ classes are
overapproximated unless a tightly fitting convex model is
used).

6.5. Experiments on the Xerox10 Data Set

The Xerox10 data set4 contains 10 objects classes (bikes,
boats, books, cars, chairs, flowers, phones, road signs,
shoes, and soft toys) and a total of 3105 images. Some
examples are shown in Fig. 4. We removed 6 mislabeled
images, leaving 3099 in the data set used.

The classification task is quite challenging as the back-
grounds are cluttered and the objects have substantial intra-
class variations, highly variable pose and lighting, and oc-
casional occlusions. We again used a SIFT based “bag
of features” representation, setting the dictionary size to
2000. We used 20n samples per class for training, for
n = 1, . . . , 10. The results are shown in Fig. 5. These are
again averages over 10 random training/test splits. For the
margin based methods, the best accuracies were obtained
with the OAO approach. NCH was the best performer in
all cases tested. Among the remaining methods, NAH and
NHD are best until about n = 100 when SVM takes over.
AHMC and HDMC are not the best performers, but they do
achieve the same performance as SVM up to about n = 80.



60

65

70

75

80

85

20 40 60 80 100 120 140 160 180 200

Number of Samples

C
la

ss
ifi

ca
tio

n 
R

at
e

AHMC-L1
AHMC-L2
HDMC-L1
HDMC-L2
SVM
NAH
NHD
NCH

 
Figure 5. Classification rates as a function of number of training
samples for the Xerox10 data set.

UCI Iris IS MF Wine WDBC
AHMC-L1 96.7 96.1 98.2 98.8 96.3
AHMC-L2 96.7 96.0 98.3 98.8 96.7
HDMC-L1 96.7 96.1 98.3 98.8 96.5
HDMC-L2 96.7 96.0 98.3 98.8 96.7
SVM 95.3 97.1 97.6 97.2 97.5
NAH 96.7 95.7 98.4 96.7 95.3
NHD 96.7 96.0 98.4 96.7 96.3
NCH 96.0 95.7 98.2 97.8 97.7

Table 3. Classification Rates (%) for the kernelized methods on the
UCI data sets.

6.6. Experiments on the UCI Data Sets

The above experiments all use linear classifiers. We also
tested the kernelized versions of the methods on five lower-
dimensional data sets from the UCI repository: Iris; Image
Segmentation (IS); Multiple Features pixel averages (MF);
Wine; and Wisconsin Diagnostic Breast Cancer (WDBC).
We used Gaussian kernels with widths set by 5-fold cross-
validation for all experiments. OAO was used for multi-
class problems. The results, shown in Table 3, are quite
mixed. The L2 and L1 variants of AHMC and HDMC per-
form similarly on all of these experiments, achieving the
best accuracies on two of the five data sets, with SVM win-
ning on one of the remaining sets and NAH/NHD winning
on the two others.

7. Summary and Conclusion
We investigated the idea of basing large margin clas-

sifiers on convex models of the participating classes, in
particular studying margin classifiers based on affine hull
and bounding hyperdisk models as alternatives to the SVM
(convex hull large margin classifier) for high-dimensional
classification tasks. We also contrasted these margin-

4ftp://ftp.xrce. xerox.com/pub/ftp-ipc

between-convex-model approaches to the corresponding
nearest-convex-model approaches tested in [3].

Given two convex models, their corresponding margin
based classifier is easily determined by finding a closest pair
of points on the two models and bisecting the displacement
between them. Such classifiers can also be kernelized, and
the extension to multi-class classification is straightforward
using any of the standard approaches such as One-Against-
One or One-Against-Rest.

The experimental results provided useful insights on
the potential application areas of the proposed methods.
Although the proposed affine (AHMC) and hyperdisk
(HDMC) margin classifiers did not come first in every
experiment, in the ensemble they appear to be competi-
tive with SVM and the nearest-convex-model approaches
(NAH, NHD, NCH), particularly for high dimensional
problems with very limited amounts of training data. In
general the hyperdisk method does at least as well as the
affine one and often a little better, presumably owing to its
tighter and somewhat more realistic convex model. (The
same conclusion was reached for the nearest-convex-model
approach in [3]).

At least in the tests reported here, replacing least squares
subspace fitting with L1 distance based fitting made little
difference. However, particularly for the affine hull meth-
ods, the performance can be sensitive to the estimated di-
mension of the subspaces so it may pay to test a range of
these.

There was no clear winner between OAR and OAO for
multi-class problems, but in OAR, if the ‘Rest’ class be-
comes too diverse its convex model can overlap the ‘One’
class, causing OAR to fail badly. For this reason, OAR
tends to prefer tighter class representations such as convex
hulls and hyperdisks rather than affine hulls.
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